In this paper we present BayesLDM, a system for Bayesian longitudinal data modeling consisting of a high-level modeling language with specific features for modeling complex multivariate time series data coupled with a compiler that can produce optimized probabilistic program code for performing inference in the specified model. BayesLDM supports modeling of Bayesian network models with a specific focus on the efficient, declarative specification of dynamic Bayesian Networks (DBNs). The BayesLDM compiler combines a model specification with inspection of available data and outputs code for performing Bayesian inference for unknown model parameters while simultaneously handling missing data. These capabilities have the potential to significantly accelerate iterative modeling workflows in domains that involve the analysis of complex longitudinal data by abstracting away the process of producing computationally efficient probabilistic inference code. We describe the BayesLDM system components, evaluate the efficiency of representation and inference optimizations and provide an illustrative example of the application of the system to analyzing heterogeneous and partially observed mobile health data.
翻译:在本文中,我们介绍BayesLDM(BayesLDM)是一个用于Bayesian纵向数据建模的系统,它由高层次的模型语言组成,具有建模复杂多变时间序列数据的具体特点,并配有能够产生最佳概率程序代码的编译者,用于在特定模型中进行推断的优化概率程序代码。BayesLDM(BayesLDM)支持Bayesian网络模型的建模,特别侧重于动态Bayesian网络(DBNS)的高效、宣示性规格。BayesLDM(BNS)汇编者将一个示范规格与现有数据和输出代码的检查结合起来,以便在同时处理缺失数据的同时对未知的模型参数进行推断。这些能力有可能通过抽取生成具有计算高效概率的参数推断性参数的生成过程,从而大大加快涉及复杂纵向数据分析的域的反复建模工作流程。我们描述了BayesLDMDM系统的各个组成部分,评价代表性和推断性优化,并提供系统在分析不同和部分观测的移动健康数据方面应用的示例示例。