Traditional domain adaptive semantic segmentation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled according to different semantic taxonomies. In many real-world settings, the target domain task requires a different taxonomy than the one imposed by the source domain. We therefore introduce the more general taxonomy adaptive cross-domain semantic segmentation (TACS) problem, allowing for inconsistent taxonomies between the two domains. We further propose an approach that jointly addresses the image-level and label-level domain adaptation. On the label-level, we employ a bilateral mixed sampling strategy to augment the target domain, and a relabelling method to unify and align the label spaces. We address the image-level domain gap by proposing an uncertainty-rectified contrastive learning method, leading to more domain-invariant and class-discriminative features. We extensively evaluate the effectiveness of our framework under different TACS settings: open taxonomy, coarse-to-fine taxonomy, and implicitly-overlapping taxonomy. Our approach outperforms the previous state-of-the-art by a large margin, while being capable of adapting to target taxonomies. Our implementation is publicly available at https://github.com/ETHRuiGong/TADA.
翻译:传统领域适应性语义分解处理在有限或不增加额外监管的情况下将模型适应到新目标领域的任务。 在处理输入领域差距时,标准领域适应设置假定产出空间没有领域变化。 在语义预测任务中,不同数据集往往根据不同的语义分类进行标签。在许多现实世界环境中,目标领域任务要求采用不同于源领域所强加的分类法。因此,我们引入了更普遍的分类法适应性适应性跨部语义分割法(TACCS)问题,允许两个领域之间出现不一致的分类法。我们进一步建议了一种方法,共同处理图像级别和标签级别域的调整。在标签层面,我们采用双边混合抽样战略来扩大目标领域,并采用重新标签方法来统一和统一标签空间。我们通过提出不确定性和重新校正的对比性学习方法来解决图像层面的差距,从而导致更多的域-内部差异性和等级分立特征。我们广泛评估了我们框架在TACS-S级域域定义和标签级域域级调整过程中的效益:在不同的透明性税制设置中,我们采用前的税制税制化方法。