In Bayesian peer-to-peer decentralized data fusion for static and dynamic systems, the underlying estimated or communicated distributions are frequently assumed to be homogeneous between agents. This requires each agent to process and communicate the full global joint distribution, and thus leads to high computation and communication costs irrespective of relevancy to specific local objectives. This work considers a family of heterogeneous decentralized fusion problems, where we consider the set of problems in which either the communicated or the estimated distributions describe different, but overlapping, states of interest that are subsets of a larger full global joint state. We exploit the conditional independence structure of such problems and provide a rigorous derivation for a family of exact and approximate heterogeneous conditionally factorized channel filter methods. We further extend existing methods for approximate conservative filtering and decentralized fusion in heterogeneous dynamic problems. Numerical examples show more than 99.5% potential communication reduction for heterogeneous channel filter fusion, and a multi-target tracking simulation shows that these methods provide consistent estimates.
翻译:在Bayesian同侪分散化的数据中,静态和动态系统的数据组合,其基础估计或传送分布通常假定介质之间是同质的,这就要求每个代理商处理和传送全球联合分布,从而导致计算和交流费用高昂,而不论与具体的地方目标是否相关。 这项工作考虑的是多种分散化的融合问题,我们考虑的是传播或估计分布描述不同但相互重叠的一系列问题,这些问题是全球整体联合状态的一个子集。我们利用这些问题的有条件独立结构,为具有精确和近似多系数化导道过滤方法的大家庭提供严格的衍生结果。我们进一步扩展了在多变动态问题中保守过滤和分散融合的现有方法。 数字实例显示,对于多相异渠道过滤器而言,可能有99.5%以上的通信减少潜力,多目标跟踪模拟显示,这些方法提供了一致的估计数。