With the advances in machine learning, there is a growing interest in AI-enabled tools for autocompleting source code. GitHub Copilot has been trained on billions of lines of open source GitHub code, and is one of such tools that has been increasingly used since its launch in June 2021. However, little effort has been devoted to understanding the practices, challenges, and expected features of using Copilot in programming for auto-completed source code from the point of view of practitioners. To this end, we conducted an empirical study by collecting and analyzing the data from Stack Overflow (SO) and GitHub Discussions. We searched and manually collected 303 SO posts and 927 GitHub discussions related to the usage of Copilot. We identified the programming languages, Integrated Development Environments (IDEs), technologies used with Copilot, functions implemented, benefits, limitations, and challenges when using Copilot. The results show that when practitioners use Copilot: (1) The major programming languages used with Copilot are JavaScript and Python, (2) the main IDE used with Copilot is Visual Studio Code, (3) the most common used technology with Copilot is Node.js, (4) the leading function implemented by Copilot is data processing, (5) the main purpose of users using Copilot is to help generate code, (6) the significant benefit of using Copilot is useful code generation, (7) the main limitation encountered by practitioners when using Copilot is difficulty of integration, and (8) the most common expected feature is that Copilot can be integrated with more IDEs. Our results suggest that using Copilot is like a double-edged sword, which requires developers to carefully consider various aspects when deciding whether or not to use it. Our study provides empirically grounded foundations that could inform developers and practitioners, as well as provide a basis for future investigations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月27日
Arxiv
37+阅读 · 2021年8月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员