Computer-use agent (CUA) frameworks, powered by large language models (LLMs) or multimodal LLMs (MLLMs), are rapidly maturing as assistants that can perceive context, reason, and act directly within software environments. Among their most critical applications is operating system (OS) control. As CUAs in the OS domain become increasingly embedded in daily operations, it is imperative to examine their real-world security implications, specifically whether CUAs can be misused to perform realistic, security-relevant attacks. Existing works exhibit four major limitations: Missing attacker-knowledge model on tactics, techniques, and procedures (TTP), Incomplete coverage for end-to-end kill chains, unrealistic environment without multi-host and encrypted user credentials, and unreliable judgment dependent on LLM-as-a-Judge. To address these gaps, we propose AdvCUA, the first benchmark aligned with real-world TTPs in MITRE ATT&CK Enterprise Matrix, which comprises 140 tasks, including 40 direct malicious tasks, 74 TTP-based malicious tasks, and 26 end-to-end kill chains, systematically evaluates CUAs under a realistic enterprise OS security threat in a multi-host environment sandbox by hard-coded evaluation. We evaluate the existing five mainstream CUAs, including ReAct, AutoGPT, Gemini CLI, Cursor CLI, and Cursor IDE based on 8 foundation LLMs. The results demonstrate that current frontier CUAs do not adequately cover OS security-centric threats. These capabilities of CUAs reduce dependence on custom malware and deep domain expertise, enabling even inexperienced attackers to mount complex enterprise intrusions, which raises social concern about the responsibility and security of CUAs.


翻译:计算机使用智能体(CUA)框架依托大型语言模型(LLM)或多模态LLM(MLLM)技术迅速发展,已成为能够在软件环境中直接感知上下文、推理并执行操作的智能助手。其最关键的应用场景之一是操作系统(OS)控制。随着OS领域的CUA日益融入日常操作,亟需审视其现实安全影响,特别是CUA是否可能被滥用以实施具有现实意义的安全攻击。现有研究存在四大局限:缺乏基于战术、技术与程序(TTP)的攻击者知识模型、端到端攻击链覆盖不完整、缺乏多主机与加密用户凭证的现实环境,以及依赖LLM-as-a-Judge的不可靠评估机制。为填补这些空白,我们提出首个与MITRE ATT&CK企业矩阵中真实世界TTP对齐的基准测试框架AdvCUA。该框架包含140项任务(含40项直接恶意任务、74项基于TTP的恶意任务及26项端到端攻击链),通过硬编码评估方式,在多主机环境沙箱中系统性地评估CUA面临的企业级OS安全威胁。我们基于8个基础LLM对现有五大主流CUA(包括ReAct、AutoGPT、Gemini CLI、Cursor CLI和Cursor IDE)进行评估。结果表明,当前前沿CUA未能充分覆盖以OS安全为核心的威胁。CUA的这些能力降低了对定制恶意软件与深度领域专业知识的依赖,使得即使缺乏经验的攻击者也能发起复杂的企业入侵,这引发了关于CUA责任与安全性的社会关切。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员