Online High-Definition (HD) map construction is pivotal for autonomous driving. While recent approaches leverage historical temporal fusion to improve performance, we identify a critical safety flaw in this paradigm: it is inherently ``spatially backward-looking." These methods predominantly enhance map reconstruction in traversed areas, offering minimal improvement for the unseen road ahead. Crucially, our analysis of downstream planning tasks reveals a severe asymmetry: while rearward perception errors are often tolerable, inaccuracies in the forward region directly precipitate hazardous driving maneuvers. To bridge this safety gap, we propose AMap, a novel framework for Ahead-aware online HD Mapping. We pioneer a ``distill-from-future" paradigm, where a teacher model with privileged access to future temporal contexts guides a lightweight student model restricted to the current frame. This process implicitly compresses prospective knowledge into the student model, endowing it with ``look-ahead" capabilities at zero inference-time cost. Technically, we introduce a Multi-Level BEV Distillation strategy with spatial masking and an Asymmetric Query Adaptation module to effectively transfer future-aware representations to the student's static queries. Extensive experiments on the nuScenes and Argoverse 2 benchmark demonstrate that AMap significantly enhances current-frame perception. Most notably, it outperforms state-of-the-art temporal models in critical forward regions while maintaining the efficiency of single current frame inference.
翻译:在线高精地图构建是自动驾驶的关键技术。尽管现有方法通过融合历史时序信息提升性能,我们发现这一范式存在严重的安全缺陷:其本质是"空间后视型"的。这些方法主要提升已驶过区域的地图重建质量,对前方未观测道路的改善微乎其微。关键的是,我们对下游规划任务的分析揭示了严重的不对称性:后方感知误差通常可容忍,而前方区域的不准确会直接引发危险驾驶行为。为弥补这一安全缺口,我们提出AMap——一种创新的前瞻性在线高精地图构建框架。我们开创了"从未来蒸馏"的新范式:通过具有未来时序上下文特权的教师模型,指导仅能访问当前帧的轻量级学生模型。该过程将前瞻性知识隐式压缩至学生模型中,使其在零推理成本下获得"向前看"的能力。技术上,我们提出了结合空间掩码的多层次BEV蒸馏策略与不对称查询适配模块,以有效将未来感知表征迁移至学生模型的静态查询中。在nuScenes和Argoverse 2基准测试上的大量实验表明,AMap显著提升了当前帧的感知性能。最值得注意的是,它在关键前方区域的性能超越了最先进的时序模型,同时保持了单当前帧推理的效率。