The Globaltest is a powerful test for the global null hypothesis that there is no association between a group of features and a response of interest, which is popular in pathway testing in metabolomics. Evaluating multiple pathways, however, requires multiple testing correction. In this paper, we propose a multiple testing method, based on closed testing, specifically designed for the Globaltest. The proposed method controls the family-wise error rate simultaneously over all possible feature sets, and therefore allows post hoc inference, i.e. the researcher may choose the pathway database after seeing the data without jeopardizing error control. To circumvent the exponential computation time of closed testing, we derive a novel shortcut that allows exact closed testing to be performed on the scale of metabolomics data. An R package ctgt is available on CRAN. We illustrate the shortcut on several metabolomics data examples.
翻译:全球测试是对以下全球无效假设的有力检验:一组特征与感兴趣的反应之间没有任何关联,这在代谢试验路径测试中很受欢迎。然而,评估多个路径需要多次测试校正。在本文件中,我们提议一种基于闭路测试的多重测试方法,专门为全球测试设计。拟议方法同时控制所有可能的特征组的家族错误率,因此允许事后临时推断,即研究人员在看到数据后可以选择路径数据库,而不会损害错误控制。为了绕过闭路测试的指数计算时间,我们得出了一个新捷径,允许在代谢数据的规模上进行精确的闭路测试。CR 软件包ctgt可以在 CRAN上找到。我们用几个代谢数据示例来说明捷径。