A robotic feeding system must be able to acquire a variety of foods. Prior bite acquisition works consider single-arm spoon scooping or fork skewering, which do not generalize to foods with complex geometries and deformabilities. For example, when acquiring a group of peas, skewering could smoosh the peas while scooping without a barrier could result in chasing the peas on the plate. In order to acquire foods with such diverse properties, we propose stabilizing food items during scooping using a second arm, for example, by pushing peas against the spoon with a flat surface to prevent dispersion. The added stabilizing arm can lead to new challenges. Critically, this arm should stabilize the food scene without interfering with the acquisition motion, which is especially difficult for easily breakable high-risk food items like tofu. These high-risk foods can break between the pusher and spoon during scooping, which can lead to food waste falling out of the spoon. We propose a general bimanual scooping primitive and an adaptive stabilization strategy that enables successful acquisition of a diverse set of food geometries and physical properties. Our approach, CARBS: Coordinated Acquisition with Reactive Bimanual Scooping, learns to stabilize without impeding task progress by identifying high-risk foods and robustly scooping them using closed-loop visual feedback. We find that CARBS is able to generalize across food shape, size, and deformability and is additionally able to manipulate multiple food items simultaneously. CARBS achieves 87.0% success on scooping rigid foods, which is 25.8% more successful than a single-arm baseline, and reduces food breakage by 16.2% compared to an analytical baseline. Videos can be found at https://sites.google.com/view/bimanualscoop-corl22/home .


翻译:机器人喂养系统必须能够获取各种各样的食物。 之前的咬前的采集工作考虑的是单臂勺勺勺勺或叉叉叉,它们不具有复杂的地貌和变形性。 例如, 当获得一组豆子时, 剥皮可以抽出豆子, 而没有屏障地挖出豆子时, 却可以挖出豆子。 为了获得具有这种不同特性的食物, 我们建议使用第二臂来抓时稳定食物。 例如, 用平坦的表面把豆子推到勺子上, 以防止分散。 添加的稳定臂可以带来新的挑战。 关键地说, 这个臂应该稳定食物场, 而不会干扰获取运动, 这对容易破碎的高风险食物物品来说特别困难。 这些高风险食物在敲门时可能会在推推车和勺子之间破裂, 可能导致食物垃圾从勺子中流出。 我们建议一种普通的直线和适应性稳定战略, 使得能够成功获得一套多样的食品的地谱和视觉特性。 我们的方法是, CARBS 和SBS 快速地分析是,, 快速地确定它们可以顺利地了解它们。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员