This chapter provides a tutorial overview of first principles methods to describe the properties of matter at the ground state or equilibrium. It begins with a brief introduction to quantum and statistical mechanics for predicting the electronic structure and diverse static properties of of many-particle systems useful for practical applications. Pedagogical examples are given to illustrate the basic concepts and simple applications of quantum Monte Carlo and density functional theory -- two representative methods commonly used in the literature of first principles modeling. In addition, this chapter highlights the practical needs for the integration of physics-based modeling and data-science approaches to reduce the computational cost and expand the scope of applicability. A special emphasis is placed on recent developments of statistical surrogate models to emulate first principles calculation from a probabilistic point of view. The probabilistic approach provides an internal assessment of the approximation accuracy of emulation that quantifies the uncertainty in predictions. Various recent advances toward this direction establish a new marriage between Gaussian processes and first principles calculation, with physical properties, such as translational, rotational, and permutation symmetry, naturally encoded in new kernel functions. Finally, it concludes with some prospects on future advances in the field toward faster yet more accurate computation leveraging a synergetic combination {of} novel theoretical concepts and efficient numerical algorithms.


翻译:本章对描述地面状态或平衡物质特性的最初原则方法进行了指导性概述,首先简要介绍用于预测电子结构和有助于实际应用的多粒子系统的各种静态特性的量子和统计力学机制,列举用于说明量子蒙特卡洛和密度功能理论的基本概念和简单应用的教学实例,这是在第一个原则模型文献中常用的两种代表性方法。此外,本章强调综合基于物理的模型和数据科学方法以减少计算成本和扩大适用性范围的实际需要。特别侧重于统计替代模型的最新发展,以从概率角度仿效第一个原则的计算。概率法提供了对模拟的近似准确性进行内部评估,以量化预测中的不确定性。最近朝这个方向取得的各种进展在高斯进程和第一个原则的计算之间建立了新的联系,与物理特性,例如翻译、轮换和变异性对等,在新的核心模型模型模型模型中自然地进行了编码,以便从概率的角度模仿第一个原则的计算。 概率方法提供了对模拟的近似准确度的精确度,从而测量了预测中的不确定性。 近来向高斯进程与物理特性的计算,如翻译、轮换、交替、分解,在更精确的将来的理论化的模型化的模型化的模型化模型的模型的模型的模型化前景。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月29日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月25日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月29日
Arxiv
0+阅读 · 2020年11月27日
Arxiv
0+阅读 · 2020年11月25日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员