Deep neural network-based image classification can be misled by adversarial examples with small and quasi-imperceptible perturbations. Furthermore, the adversarial examples created on one classification model can also fool another different model. The transferability of the adversarial examples has recently attracted a growing interest since it makes black-box attacks on classification models feasible. As an extension of classification, semantic segmentation has also received much attention towards its adversarial robustness. However, the transferability of adversarial examples on segmentation models has not been systematically studied. In this work, we intensively study this topic. First, we explore the overfitting phenomenon of adversarial examples on classification and segmentation models. In contrast to the observation made on classification models that the transferability is limited by overfitting to the source model, we find that the adversarial examples on segmentations do not always overfit the source models. Even when no overfitting is presented, the transferability of adversarial examples is limited. We attribute the limitation to the architectural traits of segmentation models, i.e., multi-scale object recognition. Then, we propose a simple and effective method, dubbed dynamic scaling, to overcome the limitation. The high transferability achieved by our method shows that, in contrast to the observations in previous work, adversarial examples on a segmentation model can be easy to transfer to other segmentation models. Our analysis and proposals are supported by extensive experiments.


翻译:以深神经网络为基础的图像分类可能会被小的和几乎无法察觉的干扰的对抗性实例误导。此外,在一种分类模式上建立的对抗性实例也可能愚弄另一种不同的模式。最近,由于对分类模式的黑箱攻击是可行的,对抗性实例的可转让性引起了越来越多的兴趣。作为分类的延伸,语义分化也得到了很大的注意,但是,关于分化模式的对抗性实例的可转让性没有得到系统的研究。在这项工作中,我们加紧研究这个专题。首先,我们探讨在分类和分化模式上过于适合的对抗性实例的现象。与关于分类模式的可转让性因过分适应源模式而受到限制的观察相反,我们发现关于分化的对抗性实例并不总是过分适合源模式。即使没有提出过分的强力,对抗性实例的可转让性也是有限的。我们把分化模式的建筑特征,即多尺度对象识别。然后,我们提出一种简单有效的模式,即对分类和分化模型的可转让性现象进行过度的比较性分析,通过以往的灵活性分析,可以显示我们所实现的反向分段段式分析的方法。

0
下载
关闭预览

相关内容

视频隐私保护技术综述
专知会员服务
35+阅读 · 2022年1月19日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
视频隐私保护技术综述
专知会员服务
35+阅读 · 2022年1月19日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员