Objective: Clinical notes contain information not present elsewhere, including drug response and symptoms, all of which are highly important when predicting key outcomes in acute care patients. We propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information, which is complementary to typically used vital signs and laboratory test results, to predict outcomes in the Intensive Care Unit (ICU). Methods: We develop a novel phenotype annotation model to annotate phenotypic features of patients which are then used as input features of predictive models to predict ICU patient outcomes. We demonstrate and validate our approach conducting experiments on three ICU prediction tasks including in-hospital mortality, physiological decompensation and length of stay for over 24,000 patients by using MIMIC-III dataset. Results: The predictive models incorporating phenotypic information achieve 0.845 (AUC-ROC) to predict in-hospital mortality, 0.839 (AUC-ROC) for physiological decompensation and 0.430 (Kappa) for length of stay, all of which consistently outperform the baseline models leveraging only vital signs and laboratory test results. Moreover, we conduct a thorough interpretability study, showing that phenotypes provide valuable insights at the patient and cohort levels. Conclusion: The proposed approach demonstrates phenotypic information complements traditionally used vital signs and laboratory test results, improving significantly forecast of outcomes in the ICU.


翻译:目标:临床说明包含在别处没有出现的信息,包括药物反应和症状,所有这些都在预测急性护理病人的主要结果时非常重要。我们提议对临床说明中的苯型进行自动注解,作为获取基本信息的一种方法,作为对通常使用的生命迹象和实验室测试结果的补充,以预测强化护理股(ICU)的结果。 方法:我们开发了一种新颖的苯型注解模式,以预测病人的性倾向特征,这些特征随后被用作预测性模型的输入特征,以预测ICU病人的结果。我们展示和验证了我们在三项ICU预测任务方面进行实验的方法,包括住院死亡率、生理衰减和24 000名病人的停留时间,这是使用MIMIC-III数据集来获取基本信息的一种方法。 结果:包含性信息的预测模型达到了0.845(AUSC-ROC),以预测住院死亡率,0.839(AUSC-ROC)用于生理补充,0.430(KAPPA)用于停留时间长度,所有这些实验都持续超过住院死亡率,通过MIC-III数据集对我们使用的基本结果进行彻底分析。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
18+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
用深度学习keras的cnn做图像识别分类,准确率达97%
数据挖掘入门与实战
4+阅读 · 2017年12月17日
已删除
将门创投
4+阅读 · 2017年12月5日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
18+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
用深度学习keras的cnn做图像识别分类,准确率达97%
数据挖掘入门与实战
4+阅读 · 2017年12月17日
已删除
将门创投
4+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员