Image denoising is a critical component in a camera's Image Signal Processing (ISP) pipeline. There are two typical ways to inject a denoiser into the ISP pipeline: applying a denoiser directly to captured raw frames (raw domain) or to the ISP's output sRGB images (sRGB domain). However, both approaches have their limitations. Residual noise from raw-domain denoising can be amplified by the subsequent ISP processing, and the sRGB domain struggles to handle spatially varying noise since it only sees noise distorted by the ISP. Consequently, most raw or sRGB domain denoising works only for specific noise distributions and ISP configurations. To address these challenges, we propose DualDn, a novel learning-based dual-domain denoising. Unlike previous single-domain denoising, DualDn consists of two denoising networks: one in the raw domain and one in the sRGB domain. The raw domain denoising adapts to sensor-specific noise as well as spatially varying noise levels, while the sRGB domain denoising adapts to ISP variations and removes residual noise amplified by the ISP. Both denoising networks are connected with a differentiable ISP, which is trained end-to-end and discarded during the inference stage. With this design, DualDn achieves greater generalizability compared to most learning-based denoising methods, as it can adapt to different unseen noises, ISP parameters, and even novel ISP pipelines. Experiments show that DualDn achieves state-of-the-art performance and can adapt to different denoising architectures. Moreover, DualDn can be used as a plug-and-play denoising module with real cameras without retraining, and still demonstrate better performance than commercial on-camera denoising. The project website is available at: https://openimaginglab.github.io/DualDn/


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月16日
Arxiv
2+阅读 · 2024年12月13日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
1+阅读 · 2024年12月16日
Arxiv
2+阅读 · 2024年12月13日
Arxiv
14+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员