A query algorithm based on homomorphism counts is a procedure for determining whether a given instance satisfies a property by counting homomorphisms between the given instance and finitely many predetermined instances. In a left query algorithm, we count homomorphisms from the predetermined instances to the given instance, while in a right query algorithm we count homomorphisms from the given instance to the predetermined instances. Homomorphisms are usually counted over the semiring N of non-negative integers; it is also meaningful, however, to count homomorphisms over the Boolean semiring B, in which case the homomorphism count indicates whether or not a homomorphism exists. We first characterize the properties that admit a left query algorithm over B by showing that these are precisely the properties that are both first-order definable and closed under homomorphic equivalence. After this, we turn attention to a comparison between left query algorithms over B and left query algorithms over N. In general, there are properties that admit a left query algorithm over N but not over B. The main result of this paper asserts that if a property is closed under homomorphic equivalence, then that property admits a left query algorithm over B if and only if it admits a left query algorithm over N. In other words and rather surprisingly, homomorphism counts over N do not help as regards properties that are closed under homomorphic equivalence. Finally, we characterize the properties that admit both a left query algorithm over B and a right query algorithm over B.


翻译:基于同态计数的查询算法是一种确定给定实例是否满足属性的过程,其通过计数给定实例和有限个预定实例之间的同态来实现。在左查询算法中,我们计算从预定实例到给定实例的同态数量,而在右查询算法中,我们计算从给定实例到预定实例的同态数量。同态通常计算在非负整数半环N上;然而,在布尔半环B上计算同态也是有意义的,此时同态数量表示是否存在同态。我们首先通过展示这些属性既是一阶可定义的,又在同态等价下闭合,来刻画可以通过B中左查询算法来定义的属性。之后,我们将关注B中左查询算法和N中左查询算法的比较。一般来说,存在在N中可以定义的属性,但在B中无法定义的属性。本文的主要结果表明,如果属性在同态等价下闭合,则该属性如果能够在N中定义左查询算法,则也必然能够在B中定义左查询算法。换言之,对于在同态等价下闭合的属性,N中的同态数量对其定义左查询算法没有帮助。最后,我们刻画了那些既可通过B中左查询算法,又可通过B中右查询算法定义的属性。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月14日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【干货】基于Keras的注意力机制实战
专知
59+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月27日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月14日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【干货】基于Keras的注意力机制实战
专知
59+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员