The Internet of Energy (IoE) is a distributed paradigm that leverages smart networks and distributed system technologies to enable decentralized energy systems. In contrast to the traditional centralized energy systems, distributed Energy Internet systems comprise multiple components and communication requirements that demand innovative technologies for decentralization, reliability, efficiency, and security. Recent advances in blockchain architectures, smart contracts, and distributed federated learning technologies have opened up new opportunities for realizing decentralized Energy Internet services. In this paper, we present a comprehensive analysis and classification of state-of-the-art solutions that employ blockchain, smart contracts, and federated learning for the IoE domains. Specifically, we identify four representative system models and discuss their key aspects. These models demonstrate the diverse ways in which blockchain, smart contracts, and federated learning can be integrated to support the main domains of IoE, namely distributed energy trading and sharing, smart microgrid energy networks, and electric and connected vehicle management. Furthermore, we provide a detailed comparison of the different levels of decentralization, the advantages of federated learning, and the benefits of using blockchain for the IoE systems. Additionally, we identify open issues and areas for future research for integrating federated learning and blockchain in the Internet of Energy domains.
翻译:暂无翻译