Cybersecurity risk management consists of several steps including the selection of appropriate controls to minimize risks. This is a difficult task that requires to search through all possible subsets of a set of available controls and identify those that minimize the risks of all stakeholders. Since stakeholders may have different perceptions of the risks (especially when considering the impact of threats), conflicting goals may arise that require to find the best possible trade-offs among the various needs. In this work, we propose a quantitative and (semi)automated approach to solve this problem based on the well-known notion of Pareto optimality. For validation, we show how a prototype tool based on our approach can assist in the Data Protection Impact Assessment mandated by the General Data Protection Regulation on a simplified but realistic use case scenario. We also evaluate the scalability of the approach by conducting an experimental evaluation with the prototype with encouraging results.
翻译:网络安全风险管理包括若干步骤,包括选择适当的控制措施以尽量减少风险,这是一项艰巨的任务,需要通过一套现有控制措施的所有可能的子集搜索,并查明哪些控制措施可以最大限度地减少所有利益攸关方的风险。由于利益攸关方对风险可能持有不同的看法(特别是在考虑威胁的影响时),因此可能出现相互冲突的目标,需要在各种需求之间找到最佳的权衡。在这项工作中,我们根据众所周知的Pareto最佳性概念提出一个定量和(semi)自动化方法来解决这一问题。在验证方面,我们展示了基于我们的方法的原型工具如何能够帮助进行《一般数据保护条例》授权的关于简化但切合实际的使用情况的数据保护影响评估。我们还评估了该方法的可扩展性,对原型进行了实验性评估,并取得了令人鼓舞的成果。