Semantic technologies are designed to facilitate context-awareness for web content, enabling machines to understand and process them. However, this has been faced with several challenges, such as disparate nature of existing solutions and lack of scalability in proportion to web scale. With a holistic perspective to web content semantic annotation, this paper focuses on leveraging cloud computing for these challenges. To achieve this, a set of requirements towards holistic semantic annotation on the web is defined and mapped with cloud computing mechanisms to facilitate them. Technical specification for the requirements is critically reviewed and examined against each of the cloud computing mechanisms, in relation to their technical functionalities. Hence, a mapping is established if the cloud computing mechanism's functionalities proffer a solution for implementation of a requirement's technical specification. The result is a cloud computing capability model for holistic semantic annotation which presents an approach towards delivering large scale semantic annotation on the web via a cloud platform.


翻译:语义技术的设计是为了促进对网络内容的环境认识,使机器能够理解和处理这些内容。然而,这遇到了若干挑战,例如现有解决方案性质不同,且与网络规模相比缺乏可缩放性。从对网络内容的语义说明的整体观点来看,本文件侧重于利用云计算来应对这些挑战。为此,界定了对网上整体语义注解的一套要求,并用云计算机制绘制了一套要求,以便利这些要求。针对每个云计算机制的技术功能,对要求的技术规格进行了严格审查和审查。因此,如果云计算机制的功能为执行需求的技术规格提供了一种解决办法,就可进行绘图。结果是一个云计算整体语义说明能力模型,它展示了通过云平台在网上提供大规模语义注解的方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
4+阅读 · 2019年12月2日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员