Coordinating inverters at scale under uncertainty is the desideratum for integrating renewables in distribution grids. Unless load demands and solar generation are telemetered frequently, controlling inverters given approximate grid conditions or proxies thereof becomes a key specification. Although deep neural networks (DNNs) can learn optimal inverter schedules, guaranteeing feasibility is largely elusive. Rather than training DNNs to imitate already computed optimal power flow (OPF) solutions, this work integrates DNN-based inverter policies into the OPF. The proposed DNNs are trained through two OPF alternatives that confine voltage deviations on the average and as a convex restriction of chance constraints. The trained DNNs can be driven by partial, noisy, or proxy descriptors of the current grid conditions. This is important when OPF has to be solved for an unobservable feeder. DNN weights are trained via back-propagation and upon differentiating the AC power flow equations assuming the network model is known. Otherwise, a gradient-free variant is put forth. The latter is relevant when inverters are controlled by an aggregator having access only to a power flow solver or a digital twin of the feeder. Numerical tests compare the DNN-based inverter control schemes with the optimal inverter setpoints in terms of optimality and feasibility.


翻译:将可再生能源纳入分配网的离岸外包,除非负荷要求和太阳能发电经常进行远程计量,否则,控制倒流者将受到近似网格条件或其代理人的制约成为关键规格。虽然深神经网络(DNNS)可以学习最佳反向时间表,但保障可行性基本上是难以实现的。这项工作不是训练DNNS模仿已经计算的最佳电流(OPF)解决方案,而是将基于DNNN的逆向等离子政策纳入OPF。提议的DNNPs通过两个OPF替代方案进行培训,这些替代方案将电压偏差限制在平均值,并将其作为对机会限制的一种配置限制。经过培训的DNNNNNN可以由当前网条件的局部、吵闹或代理描述器驱动。当OPFP必须解决不可观测的进料问题时,这一点很重要。DNNNN重量通过回调法培训,假设基于网络模式的AC电流方程式。否则,将推出一个无梯变方。当内反向的电源由具有最佳流或顶级软体测试的硬体测试规则时,只有具有最佳的NUBEVEVA的硬度。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
6+阅读 · 2021年6月24日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员