We will present the latest developments in CutLang, the runtime interpreter of a recently-developed analysis description language (ADL) for collider data analysis. ADL is a domain-specific, declarative language that describes the contents of an analysis in a standard and unambiguous way, independent of any computing framework. In ADL, analyses are written in human-readable plain text files, separating object, variable and event selection definitions in blocks, with a syntax that includes mathematical and logical operations, comparison and optimisation operators, reducers, four-vector algebra and commonly used functions. Adopting ADLs would bring numerous benefits to the LHC experimental and phenomenological communities, ranging from analysis preservation beyond the lifetimes of experiments or analysis software to facilitating the abstraction, design, visualization, validation, combination, reproduction, interpretation and overall communication of the analysis contents. Since their initial release, ADL and CutLang have been used for implementing and running numerous LHC analyses. In this process, the original syntax from CutLang v1 has been modified for better ADL compatibility, and the interpreter has been adapted to work with that syntax, resulting in the current release v2. Furthermore, CutLang has been enhanced to handle object combinatorics, to include tables and weights, to save events at any analysis stage, to benefit from multi-core/multi-CPU hardware among other improvements. In this contribution, these and other enhancements are discussed in details. In addition, real life examples from LHC analyses are presented together with a user manual.


翻译:在CutLang中,我们将介绍最新开发的分析描述语言(ADL)的最新动态,用于对相撞数据分析。ADL是一种针对具体域的、宣示性的语言,它以标准和明确的方式描述分析的内容,独立于任何计算框架。在ADL中,分析用人可读的纯文本文档写成,将对象、变量和事件选择定义分为块块块,并使用包括数学和逻辑操作器、比较和优化操作器、缩小操作器、四维用户代数和常用功能的语句。采用ADL将给LHC实验和人文学界带来许多好处,从分析寿命超过试验或分析软件的寿命期的分析保存到促进分析内容的抽象、设计、可视化、验证、组合、复制、解释和总体交流。自最初发布以来,ADL和CutLang应用了多种LHC分析。在这个过程中,CutLang v1的原有增益度被修改,以便提高ADL的兼容性,而解释员们也从目前对目标分析的增益。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
给DNN处理器跑个分 - 指标篇
StarryHeavensAbove
5+阅读 · 2017年7月9日
Arxiv
0+阅读 · 2021年3月22日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
给DNN处理器跑个分 - 指标篇
StarryHeavensAbove
5+阅读 · 2017年7月9日
Top
微信扫码咨询专知VIP会员