The lack of interpretability and transparency are preventing economists from using advanced tools like neural networks in their empirical work. In this paper, we propose a new class of interpretable neural network models that can achieve both high prediction accuracy and interpretability in regression problems with time series cross-sectional data. Our model can essentially be written as a simple function of a limited number of interpretable features. In particular, we incorporate a class of interpretable functions named persistent change filters as part of the neural network. We apply this model to predicting individual's monthly employment status using high-dimensional administrative data in China. We achieve an accuracy of 94.5% on the out-of-sample test set, which is comparable to the most accurate conventional machine learning methods. Furthermore, the interpretability of the model allows us to understand the mechanism that underlies the ability for predicting employment status using administrative data: an individual's employment status is closely related to whether she pays different types of insurances. Our work is a useful step towards overcoming the "black box" problem of neural networks, and provide a promising new tool for economists to study administrative and proprietary big data.


翻译:缺乏可解释性和透明性使得经济学家无法使用神经网络等先进工具。 在本文中,我们建议了一种新的可解释神经网络模型,在时间序列跨部门数据中,在回归问题中实现高预测准确性和可解释性。我们的模型基本上可以作为数量有限的可解释特征的简单功能来写。特别是,我们将一类可解释功能作为神经网络的一部分,称为持续变化过滤器。我们运用这一模型来预测个人月就业状况,使用中国的高维行政数据。我们在模拟测试中实现了94.5%的准确性,这与最准确的常规机器学习方法相类似。此外,模型的可解释性使我们能够理解利用行政数据预测就业状况的能力所依据的机制:个人的就业状况与她是否支付不同类型的保险密切相关。我们的工作是克服神经网络“黑盒”问题的有益步骤,并为经济学家研究行政和专有大数据提供了有希望的新工具。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
0+阅读 · 2020年11月23日
Arxiv
0+阅读 · 2020年11月17日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员