For every finitary monad $T$ on sets and every endofunctor $F$ on the category of $T$-algebras we introduce the concept of an ffg-Elgot algebra for $F$, that is, an algebra admitting coherent solutions for finite systems of recursive equations with effects represented by the monad $T$. The goal is to study the existence and construction of free ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point $\varphi F$, i.e. the colimit of all $F$-coalgebras with free finitely generated carrier, which is shown to be the initial ffg-Elgot algebra. This is the technical foundation for our main result: the category of ffg-Elgot algebras is monadic over the category of $T$-algebras.
翻译:对于每套成品和每套成品中的每套成品和每类成品中的每件成品美元,我们提出一个概念,即用美元,即代数承认以美元为单位的ffg-Elgot代数(ffg-Elgot代数)为固定的循环方程系统的统一解决办法,以美元为单位。目的是研究是否存在和建造免费的ffg-Elgot代数。为此目的,我们调查当地ffg固定点$\varphi F$,即所有用自由的有限生成载体的$fg-Elgot代数(ffg-Elggot代数)的系数(ffg-Elggget代数),这是我们主要结果的技术基础:ffg-Elgot代数的类别在$t-algebra的类别中是一元。