The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation possesses significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium, though it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this article, we give the first uncoupled no-regret dynamics that converge with high probability to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-regret algorithm which guarantees with high probability that trigger regrets grow sublinearly in the number of iterations.


翻译:简单、未相互校正的动态的存在,与正态游戏中的正态平衡相关,是多试剂系统理论中一个值得庆贺的结果。具体地说,20多年来人们都知道,当所有玩家试图在反复的正态游戏中最大限度地减少内部遗憾时,玩耍的经验频率会与正态关联平衡相融合。广泛的游戏(即树形游戏)通过模拟顺序和同步动作以及私人信息,将正态游戏普遍化游戏。由于游戏的顺序性质和部分信息的存在,广泛的形式关系与正态对口方有着显著不同的特点,其中许多仍然是开放的研究方向。广泛形式关联平衡(EFCE)被提议为自然的广泛形式对应方,与正态关联平衡。虽然目前尚不清楚,EFCE是否出现自相交错的代理动态。在文章中,我们给第一个未相互交错的不相交错的亚动的次动态,与游戏的精确概率非常接近的EFCEFDR(EF)相交替的特性性触发性前程,而每个先行的先行式机序式机序式中,我们回回回回回回的机式机的机式,每个先序式机的机的次式机的机的机序式,其次式的机序式的机序式的机序式,其次的机序式,其次。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Arxiv
0+阅读 · 2021年5月31日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Top
微信扫码咨询专知VIP会员