This article describes a new method for estimating weekly incidence (new onset) of symptoms consistent with Influenza and COVID-19, using data from the Flutracking survey. The method mitigates some of the known self-selection and symptom-reporting biases present in existing approaches to this type of participatory longitudinal survey data. The key novel steps in the analysis are: 1) Identifying new onset of symptoms for three different Symptom Groupings: COVID-like illness (CLI1+, CLI2+), and Influenza-like illness (ILI), for responses reported in the Flutracking survey. 2) Adjusting for symptom reporting bias by restricting the analysis to a sub-set of responses from those participants who have consistently responded for a number of weeks prior to the analysis week. 3) Weighting responses by age to adjust for self-selection bias in order to account for the under- and over-representation of different age groups amongst the survey participants. This uses the survey package in R. 4) Constructing 95% point-wise confidence bands for incidence estimates using weighted logistic regression from the survey package in R. In addition to describing these steps, the article demonstrates an application of this method to Flutracking data for the 12 months from 27th April 2020 until 25th April 2021.
翻译:这一条介绍了一种新方法,用以利用流感跟踪调查的数据,估计与流感和COVID-19相适应的症状每周发病率(新开始),该方法利用流感跟踪调查中报告的答复,评估与流感和COVID-19相符合的症状每周发病率(新开始)的新方法。该方法减轻了在这种参与性纵向调查数据的现有办法中存在的已知自我选择和症状报告偏差。分析中的关键新步骤是:(1) 查明三种不同症状组的新开始症状:COVID类疾病(CLI1+、CLI2+)和流感类疾病(ILI),用于评估流感跟踪调查中报告的答复。 2 调整症状报告偏差,将分析限制在分析周前数周持续答复的参与者答复的子集中进行。 3 按年龄对自我选择偏差进行调整,以考虑到不同年龄组在调查参与者中比例不足和过多的情况。 这使用了R.4的调查包, 利用R-21-2020年4月27日的加权后勤回归来计算发病率估计数的95%的点信任带。除了说明这些步骤之外,该条还用2020年4月25日至2020年4月25日的频率方法。