This article describes a new method for estimating weekly incidence (new onset) of symptoms consistent with Influenza and COVID-19, using data from the Flutracking survey. The method mitigates some of the known self-selection and symptom-reporting biases present in existing approaches to this type of participatory longitudinal survey data. The key novel steps in the analysis are: 1) Identifying new onset of symptoms for three different Symptom Groupings: COVID-like illness (CLI1+, CLI2+), and Influenza-like illness (ILI), for responses reported in the Flutracking survey. 2) Adjusting for symptom reporting bias by restricting the analysis to a sub-set of responses from those participants who have consistently responded for a number of weeks prior to the analysis week. 3) Weighting responses by age to adjust for self-selection bias in order to account for the under- and over-representation of different age groups amongst the survey participants. This uses the survey package in R. 4) Constructing 95% point-wise confidence bands for incidence estimates using weighted logistic regression from the survey package in R. In addition to describing these steps, the article demonstrates an application of this method to Flutracking data for the 12 months from 27th April 2020 until 25th April 2021.


翻译:这一条介绍了一种新方法,用以利用流感跟踪调查的数据,估计与流感和COVID-19相适应的症状每周发病率(新开始),该方法利用流感跟踪调查中报告的答复,评估与流感和COVID-19相符合的症状每周发病率(新开始)的新方法。该方法减轻了在这种参与性纵向调查数据的现有办法中存在的已知自我选择和症状报告偏差。分析中的关键新步骤是:(1) 查明三种不同症状组的新开始症状:COVID类疾病(CLI1+、CLI2+)和流感类疾病(ILI),用于评估流感跟踪调查中报告的答复。 2 调整症状报告偏差,将分析限制在分析周前数周持续答复的参与者答复的子集中进行。 3 按年龄对自我选择偏差进行调整,以考虑到不同年龄组在调查参与者中比例不足和过多的情况。 这使用了R.4的调查包, 利用R-21-2020年4月27日的加权后勤回归来计算发病率估计数的95%的点信任带。除了说明这些步骤之外,该条还用2020年4月25日至2020年4月25日的频率方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年12月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员