In this article, an overview of Bayesian methods for sequential simulation from posterior distributions of nonlinear and non-Gaussian dynamic systems is presented. The focus is mainly laid on sequential Monte Carlo methods, which are based on particle representations of probability densities and can be seamlessly generalized to any state-space representation. Within this context, a unified framework of the various Particle Filter (PF) alternatives is presented for the solution of state, state-parameter and input-state-parameter estimation problems on the basis of sparse measurements. The algorithmic steps of each filter are thoroughly presented and a simple illustrative example is utilized for the inference of i) unobserved states, ii) unknown system parameters and iii) unmeasured driving inputs.
翻译:本文概述了巴伊西亚从非线性和非加苏西动态系统的后方分布进行连续模拟的方法,重点主要放在连续的蒙特卡洛方法上,这些方法基于概率密度的粒子表示,可以无缝地向任何州-空间表示,在此范围内,提出了各种粒子过滤器(PF)替代方法的统一框架,以根据稀少的测量结果解决国家、州参数和输入状态参数估计问题,每个过滤器的算法步骤都作了透彻的介绍,并用一个简单的示例来推断(i) 不受观察的国家、(ii) 未知的系统参数和(iii) 未经测量的驱动输入。