A central use case for the Internet of Things (IoT) is the adoption of sensors to monitor physical processes, such as the environment and industrial manufacturing processes, where they provide data for predictive maintenance, anomaly detection, or similar. The sensor devices are typically resource-constrained in terms of computation and power, and need to rely on cloud or edge computing for data processing. However, the capacity of the wireless link and their power constraints limit the amount of data that can be transmitted to the cloud. While this is not problematic for the monitoring of slowly varying processes such as temperature, it is more problematic for complex signals such as those captured by vibration and acoustic sensors. In this paper, we consider the specific problem of remote anomaly detection based on signals that fall into the latter category over wireless channels with resource-constrained sensors. We study the impact of source coding on the detection accuracy with both an anomaly detector based on Principal Component Analysis (PCA) and one based on an autoencoder. We show that the coded transmission is beneficial when the signal-to-noise ratio (SNR) of the channel is low, while uncoded transmission performs best in the high SNR regime.


翻译:对物联网(IoT)来说,一个中央使用实例是采用传感器来监测物理过程,例如环境和工业制造过程,它们为预测性维护、异常现象检测或类似过程提供数据。传感器装置通常在计算和功率方面受到资源限制,需要依靠云或边缘计算来进行数据处理。然而,无线链接的能力及其功率限制可以传送到云中的数据量。虽然这对监测缓慢变化的过程,例如温度来说没有问题,但是对于震动和声响传感器所捕捉的复杂信号来说,它更成问题。在本文中,我们考虑到基于无线频道上无线传感器所及信号的远程异常探测的具体问题。我们研究源对探测准确性的影响,即根据主元件分析(PCA)和自动电解码器(Outoencoder)与异常探测器进行编码。我们表明,当频道的信号对音频比(SNR)低时,编码传输是有利的,而未编码传输在高NSR系统中表现最佳。

1
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员