Capturing dynamics of operational similarity among terrorist groups is critical to provide actionable insights for counter-terrorism and intelligence monitoring. Yet, in spite of its theoretical and practical relevance, research addressing this problem is currently lacking. We tackle this problem proposing a novel computational framework for detecting clusters of terrorist groups sharing similar behaviors, focusing on groups' yearly repertoire of deployed tactics, attacked targets, and utilized weapons. Specifically considering those organizations that have plotted at least 50 attacks from 1997 to 2018, accounting for a total of 105 groups responsible for more than 42,000 events worldwide, we offer three sets of results. First, we show that over the years global terrorism has been characterized by increasing operational cohesiveness. Second, we highlight that year-to-year stability in co-clustering among groups has been particularly high from 2009 to 2018, indicating temporal consistency of similarity patterns in the last decade. Third, we demonstrate that operational similarity between two organizations is driven by three factors: (a) their overall activity; (b) the difference in the diversity of their operational repertoires; (c) the difference in a combined measure of diversity and activity. Groups' operational preferences, geographical homophily and ideological affinity have no consistent role in determining operational similarity.


翻译:然而,尽管研究在理论和实践上具有相关性,但目前还缺乏解决这一问题的研究。第二,我们强调,2009年至2018年期间,各集团之间联合集结的年间稳定程度特别高,表明过去十年中类似模式的时间一致性。第三,我们表明,两个组织之间的业务相似性受三个因素驱动:(a) 其总体活动;(b) 其业务重整的多样性差异;(c) 多样性和活动的综合度的差异。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
62+阅读 · 2020年3月4日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员