Recognition and classification of Figurative Language (FL) is an open problem of Sentiment Analysis in the broader field of Natural Language Processing (NLP) due to the contradictory meaning contained in phrases with metaphorical content. The problem itself contains three interrelated FL recognition tasks: sarcasm, irony and metaphor which, in the present paper, are dealt with advanced Deep Learning (DL) techniques. First, we introduce a data prepossessing framework towards efficient data representation formats so that to optimize the respective inputs to the DL models. In addition, special features are extracted in order to characterize the syntactic, expressive, emotional and temper content reflected in the respective social media text references. These features aim to capture aspects of the social network user's writing method. Finally, features are fed to a robust, Deep Ensemble Soft Classifier (DESC) which is based on the combination of different DL techniques. Using three different benchmark datasets (one of them containing various FL forms) we conclude that the DESC model achieves a very good performance, worthy of comparison with relevant methodologies and state-of-the-art technologies in the challenging field of FL recognition.


翻译:在广义的自然语言处理(NLP)中,由于带有隐喻内容的语句中的含义自相矛盾,承认和分类“FL”是一个公开的敏感分析问题,问题本身包含三个相互关联的“FL”识别任务:讽刺、讽刺和隐喻,在本文件中,这些任务涉及先进的深层学习(DL)技术。首先,我们引入一个数据预留框架,以建立高效的数据代表格式,从而优化对DL模式的各自投入。此外,还提取了特殊特征,以描述在相应的社交媒体文本引用中反映的合成、表达、情感和情绪内容。这些特征旨在捕捉社交网络用户的写法的各个方面。最后,这些特征被注入一个强大的、深层集合的软分类器(DEC),它以不同的DL技术相结合为基础。使用三个不同的基准数据集(其中有一个含有各种“FL”格式),我们的结论是,DESC模型取得了非常良好的性能,值得与具有挑战性的FL认知领域的相关方法和状态技术进行比较。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
9+阅读 · 2018年4月12日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员