Recognition and classification of Figurative Language (FL) is an open problem of Sentiment Analysis in the broader field of Natural Language Processing (NLP) due to the contradictory meaning contained in phrases with metaphorical content. The problem itself contains three interrelated FL recognition tasks: sarcasm, irony and metaphor which, in the present paper, are dealt with advanced Deep Learning (DL) techniques. First, we introduce a data prepossessing framework towards efficient data representation formats so that to optimize the respective inputs to the DL models. In addition, special features are extracted in order to characterize the syntactic, expressive, emotional and temper content reflected in the respective social media text references. These features aim to capture aspects of the social network user's writing method. Finally, features are fed to a robust, Deep Ensemble Soft Classifier (DESC) which is based on the combination of different DL techniques. Using three different benchmark datasets (one of them containing various FL forms) we conclude that the DESC model achieves a very good performance, worthy of comparison with relevant methodologies and state-of-the-art technologies in the challenging field of FL recognition.
翻译:在广义的自然语言处理(NLP)中,由于带有隐喻内容的语句中的含义自相矛盾,承认和分类“FL”是一个公开的敏感分析问题,问题本身包含三个相互关联的“FL”识别任务:讽刺、讽刺和隐喻,在本文件中,这些任务涉及先进的深层学习(DL)技术。首先,我们引入一个数据预留框架,以建立高效的数据代表格式,从而优化对DL模式的各自投入。此外,还提取了特殊特征,以描述在相应的社交媒体文本引用中反映的合成、表达、情感和情绪内容。这些特征旨在捕捉社交网络用户的写法的各个方面。最后,这些特征被注入一个强大的、深层集合的软分类器(DEC),它以不同的DL技术相结合为基础。使用三个不同的基准数据集(其中有一个含有各种“FL”格式),我们的结论是,DESC模型取得了非常良好的性能,值得与具有挑战性的FL认知领域的相关方法和状态技术进行比较。