One of the biggest challenges in Federated Learning (FL) is that client devices often have drastically different computation and communication resources for local updates. To this end, recent research efforts have focused on training heterogeneous local models obtained by pruning a shared global model. Despite empirical success, theoretical guarantees on convergence remain an open question. In this paper, we present a unifying framework for heterogeneous FL algorithms with {\em arbitrary} adaptive online model pruning and provide a general convergence analysis. In particular, we prove that under certain sufficient conditions and on both IID and non-IID data, these algorithms converges to a stationary point of standard FL for general smooth cost functions, with a convergence rate of $O(\frac{1}{\sqrt{Q}})$. Moreover, we illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index, advocating a joint design of local pruning masks for efficient training.
翻译:联邦学习联合会(FL)的最大挑战之一,是客户设备往往拥有与本地更新截然不同的计算和通信资源。为此,最近的研究工作侧重于培训通过运行一个共享的全球模型获得的多样化本地模型。尽管取得了经验上的成功,但关于趋同的理论保障仍然是一个尚未解决的问题。在本文中,我们提出了一个具有“任性”适应性在线模型运行的多样化FL算法的统一框架,并提供了一般性的趋同分析。特别是,我们证明,在某些足够条件下,在ID数据和非IID数据上,这些算法都汇合到通用平滑成本功能标准FL的固定点,其趋同率为$O(frac{1unsqrt})。此外,我们阐明了影响趋同的两个关键因素:运行引发的噪音和最小覆盖指数,倡导联合设计用于高效培训的本地修剪除口罩。