External control of agent-based models is vital for complex adaptive systems research. Often these experiments require vast numbers of simulation runs and are computationally expensive. NetLogo is the language of choice for most agent-based modelers but lacks direct API access through Python. NL4Py is a Python package for the parallel execution of NetLogo simulations via Python, designed for speed, scalability, and simplicity of use. NL4Py provides access to the large number of open-source machine learning and analytics libraries of Python and enables convenient and efficient parallelization of NetLogo simulations with minimal coding expertise by domain scientists.
翻译:对于复杂的适应系统研究来说,对以物剂为基础的模型的外部控制至关重要,这些实验往往需要大量的模拟运行,而且计算成本很高。NetLogo是大多数以物剂为基础的模型的选用语言,但无法通过Python直接进入API。NL4Py是通过Python平行进行NetLogo模拟的Python软件包,其设计是为了速度、可缩放性和使用简单性。NL4Py提供大量开源机器学习和分析 Python图书馆的接入,使NetLogo模拟能够方便和高效地与域科学家最低限度的编码专门知识平行进行。