Designing new chemical compounds with desired pharmaceutical properties is a challenging task and takes years of development and testing. Still, a majority of new drugs fail to prove efficient. Recent success of deep generative modeling holds promises of generation and optimization of new molecules. In this review paper, we provide an overview of the current generative models, and describe necessary biological and chemical terminology, including molecular representations needed to understand the field of drug design and drug response. We present commonly used chemical and biological databases, and tools for generative modeling. Finally, we summarize the current state of generative modeling for drug design and drug response prediction, highlighting the state-of-art approaches and limitations the field is currently facing.
翻译:设计具有理想制药特性的新化学化合物是一项艰巨的任务,需要多年的开发和测试,但大多数新药物仍未能证明是有效的;最近深层基因模型的成功预示着新分子的产生和优化的前景;在本审查文件中,我们概述了目前的基因模型,并描述了必要的生物和化学术语,包括理解药物设计和药物反应领域所需的分子表现;我们提供了常用的化学和生物数据库和基因模型工具;最后,我们总结了药物设计和药物反应预测的基因模型现状,突出了该领域目前面临的最先进的方法和局限性。