We consider a system consisting of a server, which receives updates for $N$ files according to independent Poisson processes. The goal of the server is to deliver the latest version of the files to the user through a parallel network of $K$ caches. We consider an update received by the user successful, if the user receives the same file version that is currently prevailing at the server. We derive an analytical expression for information freshness at the user. We observe that freshness for a file increases with increase in consolidation of rates across caches. To solve the multi-cache problem, we first solve the auxiliary problem of a single-cache system. We then rework this auxiliary solution to our parallel-cache network by consolidating rates to single routes as much as possible. This yields an approximate (sub-optimal) solution for the original problem. We provide an upper bound on the gap between the sub-optimal solution and the optimal solution. Numerical results show that the sub-optimal policy closely approximates the optimal policy.


翻译:我们考虑一个由服务器组成的系统,该服务器根据独立的 Poisson 程序接收$N 文件的更新。 服务器的目标是通过一个由$K$缓存组成的平行网络向用户提供文件的最新版本。 我们考虑用户收到的更新成功, 如果用户收到服务器目前使用的相同文件版本。 我们为用户的信息更新度提供分析表达方式。 我们观察到,随着缓存速度的整合增加,文件的新鲜度会增加。 为了解决多缓存问题, 我们首先解决单缓存系统的辅助问题。 然后我们尽可能将速率合并到单一路径, 将这一辅助解决方案重新应用到平行缓存网络中。 这为最初的问题提供了一种近似( 亚最佳) 的解决方案。 我们为次最佳解决方案和最佳解决方案之间的差距提供了一个上层。 数字结果显示, 亚最佳政策接近最佳政策 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年6月29日
Coding for Polymer-Based Data Storage
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月25日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员