Decentralized training removes the centralized server, making it a communication-efficient approach that can significantly improve training efficiency, but it often suffers from degraded performance compared to centralized training. Multi-Gossip Steps (MGS) serve as a simple yet effective bridge between decentralized and centralized training, significantly reducing experiment performance gaps. However, the theoretical reasons for its effectiveness and whether this gap can be fully eliminated by MGS remain open questions. In this paper, we derive upper bounds on the generalization error and excess error of MGS using stability analysis, systematically answering these two key questions. 1). Optimization Error Reduction: MGS reduces the optimization error bound at an exponential rate, thereby exponentially tightening the generalization error bound and enabling convergence to better solutions. 2). Gap to Centralization: Even as MGS approaches infinity, a non-negligible gap in generalization error remains compared to centralized mini-batch SGD ($\mathcal{O}(T^{\frac{c\beta}{c\beta +1}}/{n m})$ in centralized and $\mathcal{O}(T^{\frac{2c\beta}{2c\beta +2}}/{n m^{\frac{1}{2c\beta +2}}})$ in decentralized). Furthermore, we provide the first unified analysis of how factors like learning rate, data heterogeneity, node count, per-node sample size, and communication topology impact the generalization of MGS under non-convex settings without the bounded gradients assumption, filling a critical theoretical gap in decentralized training. Finally, promising experiments on CIFAR datasets support our theoretical findings.
翻译:暂无翻译