This paper uses value functions to characterize the pure-strategy subgame-perfect equilibria of an arbitrary, possibly infinite-horizon game. It specifies the game's extensive form as a pentaform (Streufert 2023p, coming revision of arXiv:2107.10801), which is a set of quintuples formalizing the abstract relationships between nodes, actions, players, and situations (situations generalize information sets). Because a pentaform is a set, this paper can explicitly partition the game form into piece forms, each of which starts at a (Selten) subroot and contains all subsequent nodes except those that follow a subsequent subroot. Then the set of subroots becomes the domain of a value function, and the piece-form partition becomes the framework for a value recursion which generalizes the Bellman equation from dynamic programming. The main results connect the value recursion with the subgame-perfect equilibria of the original game, under the assumptions of upper- and lower-convergence. Finally, a corollary characterizes subgame perfection as the absence of an improving one-piece deviation.
翻译:本文使用值函数来描述任意的、 可能是无限的 pholizon 游戏的纯战略子游戏的精准亚游戏的平衡性。 它指定游戏的广度形式为五形( Streufert 2023p, 即将对 arXiv 进行订正: 2107. 10801), 这是一组五分形, 正式确定节点、 动作、 玩家 和 情境之间的抽象关系( 一般信息集 ) 。 由于五分形是一组, 本文可以将游戏形式明确分割成块形, 每个以( Selten) 子根为起点, 并包含所有随后的节点, 但随后的节点除外 。 然后, 子根组群变成一个值函数的域, 块形分区变成一个值循环框架, 将贝尔曼 方程式从动态的编程中一般化。 主要结果将数值重现与原始游戏的亚游戏的精度平衡性联系起来, 在上方和下方调的假设下方形下, 。 最后, 必然地将子将子组合的精度描述为次组合的精度的精度的精度的精度的精度描述为次精度, 。 。 最后, 。