We revisit evaluation of logical formulas that allow both uninterpreted relations, constrained to be finite, as well as interpreted vocabulary over an infinite domain: denoted in the past as embedded finite model theory. We extend the analysis of "collapse results": the ability to eliminate first-order quantifiers over the infinite domain in favor of quantification over the finite structure. We investigate several weakenings of collapse, one allowing higher-order quantification over the finite structure, another allowing expansion of the theory. We also provide results comparing collapse for unary signatures with general signatures, and new analyses of collapse for natural decidable theories.


翻译:我们重温了允许未解释关系(限制为有限集合)以及解释无限域中的词汇的逻辑公式的求值,这在过去被称为嵌入式有限模型理论。我们扩展了“坍缩结果”的分析:可以通过有限结构上的量化而非无限域上的一阶量化来消除一阶量词。我们研究了几种量词坍缩的削弱形式,其中一种允许在有限结构上的高阶量化,另一种允许扩展理论。我们还提供了比较基于一元签名和通用签名的量词坍缩的结果,以及自然可判定理论的新分析。

0
下载
关闭预览

相关内容

嵌入式即嵌入式系统,IEEE(美国电气和电子工程师协会)对其定义是用于控制、监视或者辅助操作机器和设备的装置,是一种专用的计算机系统;国内普遍认同的嵌入式系统定义是以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统;从应用对象上加以定义来说,嵌入式系统是软件和硬件的综合体,还可以涵盖机械等附属装置。
专知会员服务
32+阅读 · 2021年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员