We revisit evaluation of logical formulas that allow both uninterpreted relations, constrained to be finite, as well as interpreted vocabulary over an infinite domain: denoted in the past as embedded finite model theory. We extend the analysis of "collapse results": the ability to eliminate first-order quantifiers over the infinite domain in favor of quantification over the finite structure. We investigate several weakenings of collapse, one allowing higher-order quantification over the finite structure, another allowing expansion of the theory. We also provide results comparing collapse for unary signatures with general signatures, and new analyses of collapse for natural decidable theories.
翻译:我们重温了允许未解释关系(限制为有限集合)以及解释无限域中的词汇的逻辑公式的求值,这在过去被称为嵌入式有限模型理论。我们扩展了“坍缩结果”的分析:可以通过有限结构上的量化而非无限域上的一阶量化来消除一阶量词。我们研究了几种量词坍缩的削弱形式,其中一种允许在有限结构上的高阶量化,另一种允许扩展理论。我们还提供了比较基于一元签名和通用签名的量词坍缩的结果,以及自然可判定理论的新分析。