Geosynchronous satellite (GEO) networks are a crucial option for users beyond terrestrial connectivity. However, unlike terrestrial networks, GEO networks exhibit high latency and deploy TCP proxies and traffic shapers. The deployment of proxies effectively mitigates the impact of high network latency in GEO networks, while traffic shapers help realize customer-controlled data-saver options that optimize data usage. It is unclear how the interplay between GEO networks' high latency, TCP proxies, and traffic-shaping policies affects the quality of experience (QoE) for commonly used video applications. To fill this gap, we analyze the quality of over $2$k YouTube video sessions streamed across a production GEO network with a $900$Kbps shaping rate. Given the average bit rates for the selected videos, we expected seamless streaming at $360$p or lower resolutions. However, our analysis reveals that this is not the case: $28\%$ of TCP sessions and $18\%$ of gQUIC sessions experience rebuffering events, while the median average resolution is only $380$p for TCP and $299$p for gQUIC. Our analysis identifies two key factors contributing to sub-optimal performance: (i)unlike TCP, gQUIC only utilizes $63\%$ of network capacity; and (ii)YouTube's imperfect chunk request pipelining. As a result of our study, the partner GEO ISP discontinued support for the low-bandwidth data-saving option in U.S. business and residential markets to avoid potential degradation of video quality -- highlighting the practical significance of our findings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员