The paper presents an approach for building consistent and applicable clinical decision support systems (CDSSs) using a data-driven predictive model aimed at resolving the problem of low applicability and scalability of CDSSs in real-world applications. The approach is based on a threestage application of domain-specific and data-driven supportive procedures that are to be integrated into clinical business processes with higher trust and explainability of the prediction results and recommendations. Within the considered three stages, the regulatory policy, data-driven modes, and interpretation procedures are integrated to enable natural domain-specific interaction with decisionmakers with sequential narrowing of the intelligent decision support focus. The proposed methodology enables a higher level of automation, scalability, and semantic interpretability of CDSSs. The approach was implemented in software solutions and tested within a case study in T2DM prediction, enabling us to improve known clinical scales (such as FINDRISK) while keeping the problem-specific reasoning interface similar to existing applications. Such inheritance, together with the three-staged approach, provide higher compatibility of the solution and leads to trust, valid, and explainable application of data-driven solutions in real-world cases.


翻译:本文介绍了一种方法,用于建立一致和适用的临床决策支持系统(CDSS),使用一种数据驱动的预测模型,旨在解决在现实世界应用中CDSS适用性和可扩缩性低的问题,该方法基于三阶段地应用特定领域和数据驱动的支持程序,这些程序将被纳入临床业务流程,具有更高的信任度和对预测结果和建议的可解释性。在这三个阶段中,监管政策、数据驱动模式和解释程序被整合在一起,以便与决策者进行自然的域别互动,从而按顺序缩小明智决策支持的重点。提议的方法使得CDSS的自动化、可扩缩性和可释性更高水平。该方法在软件解决方案中实施,并在T2DM预测案例研究中测试,使我们能够改进已知的临床规模(如FICRISK),同时将特定问题推理界面与现有应用相类似。这种继承与三阶段方法一起,使解决方案更加兼容,并导致在现实世界案例中对数据驱动的解决办法进行信任、有效和可解释的应用。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
How Can AI Recognize Pain and Express Empathy
Arxiv
1+阅读 · 2021年10月8日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员