Latent variable models have been successfully applied in lossless compression with the bits-back coding algorithm. However, bits-back suffers from an increase in the bitrate equal to the KL divergence between the approximate posterior and the true posterior. In this paper, we show how to remove this gap asymptotically by deriving bits-back coding algorithms from tighter variational bounds. The key idea is to exploit extended space representations of Monte Carlo estimators of the marginal likelihood. Naively applied, our schemes would require more initial bits than the standard bits-back coder, but we show how to drastically reduce this additional cost with couplings in the latent space. When parallel architectures can be exploited, our coders can achieve better rates than bits-back with little additional cost. We demonstrate improved lossless compression rates in a variety of settings, especially in out-of-distribution or sequential data compression.
翻译:以比重回编码算法成功应用到无损压缩中。 但是, 位反位的比特率增长与 KL 近似后部和真实后部的差异相等。 在本文中, 我们展示了如何通过从较紧的变差边框中得出比特后部编码算法, 来消除这一差距。 关键的想法是利用蒙特卡洛 估计概率的扩展空间表示。 纯度应用, 我们的计划需要比标准比标准比特后部调解码器多一些初始比特, 但是我们展示了如何在潜在空间中大幅降低这一附加成本。 当平行结构可以被开发时, 我们的编码者可以实现比比比比比小的附加成本更好的比重。 我们展示了各种环境的无损压缩率, 特别是在分配外或连续数据压缩中。