Identifying unexpected objects on roads in semantic segmentation (e.g., identifying dogs on roads) is crucial in safety-critical applications. Existing approaches use images of unexpected objects from external datasets or require additional training (e.g., retraining segmentation networks or training an extra network), which necessitate a non-trivial amount of labor intensity or lengthy inference time. One possible alternative is to use prediction scores of a pre-trained network such as the max logits (i.e., maximum values among classes before the final softmax layer) for detecting such objects. However, the distribution of max logits of each predicted class is significantly different from each other, which degrades the performance of identifying unexpected objects in urban-scene segmentation. To address this issue, we propose a simple yet effective approach that standardizes the max logits in order to align the different distributions and reflect the relative meanings of max logits within each predicted class. Moreover, we consider the local regions from two different perspectives based on the intuition that neighboring pixels share similar semantic information. In contrast to previous approaches, our method does not utilize any external datasets or require additional training, which makes our method widely applicable to existing pre-trained segmentation models. Such a straightforward approach achieves a new state-of-the-art performance on the publicly available Fishyscapes Lost & Found leaderboard with a large margin.


翻译:在安全关键应用中,在道路的语义分隔部分(例如,在道路上识别狗)中识别意外物体至关重要。现有方法使用外部数据集中意外物体的图像,或需要额外培训(例如,再培训分离网络或培训额外的网络),这就需要非三重劳动强度或漫长的推算时间。一种可能的替代办法是使用诸如最高斜线(即,在最后软性层之前各班级的最大值)等预先培训网络的预测分数来探测此类物体。然而,每个预测类的最大登录点的分布与其它不同,这大大不同,降低了在城市封闭部分中查明意外物体的性能。为了解决这一问题,我们建议一种简单而有效的方法,使最大斜线标准化,以便协调不同的分布,反映每个预测类中最大斜线的相对含义。此外,我们从两个不同的角度来考虑当地区域的情况,即邻接像体共享相似的语义分。与以往不同,我们的方法不同,这降低了在城市封闭区分割部分中发现意外物体的性能。我们的方法并不使用任何可应用的直观的直观性计算方法,因此,在现有的直观模型前,因此,我们可以使用任何可应用任何可应用的直径分析方法。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
39+阅读 · 2020年7月27日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Arxiv
3+阅读 · 2018年6月14日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
39+阅读 · 2020年7月27日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员