Synthetic Magnetic Resonance (MR) imaging predicts images at new design parameter settings from a few observed MR scans. Model-based methods, that use both the physical and statistical properties underlying the MR signal and its acquisition, can predict images at any setting from as few as three scans, allowing it to be used in individualized patient- and anatomy-specific contexts. However, the estimation problem in model-based synthetic MR imaging is ill-posed and so regularization, in the form of correlated Gaussian Markov Random Fields, is imposed on the voxel-wise spin-lattice relaxation time, spin-spin relaxation time and the proton density underlying the MR image. We develop theoretically sound but computationally practical matrix-free estimation methods for synthetic MR imaging. Our evaluations demonstrate excellent ability of our methods to synthetize MR images in a clinical framework and also estimation and prediction accuracy and consistency. An added strength of our model-based approach, also developed and illustrated here, is the accurate estimation of standard errors of regional means in the synthesized images.


翻译:模型方法,既使用MR信号及其获取的物理和统计特性,又使用MR信号的物理和统计特性,可以从任何一种环境预测图像,仅从三部扫描即可将其用于个性化的病人和解剖特定环境;然而,基于模型的合成MR成像的估算问题存在错误,因此,以相关Gausian Markov随机场为形式的基于模型的合成MR成像的正规化问题,被强加在Voxel-wides 旋式拉特冰放松时间、旋旋翼放松时间和MR图像的质子密度上。我们为合成MR成像开发了理论上合理但从计算上实用的矩阵估算方法。我们的评估表明,我们的方法在临床框架中合成MR图像合成合成的组合以及估计和预测准确性和一致性方面,我们基于模型的方法的另一个强点是合成图像中区域手段的标准误差的准确估计。

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员