This work demonstrates that Legal Judgement Prediction systems without expert-informed adjustments can be vulnerable to shallow, distracting surface signals that arise from corpus construction, case distribution, and confounding factors. To mitigate this, we use domain expertise to strategically identify statistically predictive but legally irrelevant information. We adopt adversarial training to prevent the system from relying on it. We evaluate our deconfounded models by employing interpretability techniques and comparing to expert annotations. Quantitative experiments and qualitative analysis show that our deconfounded model consistently aligns better with expert rationales than baselines trained for prediction only. We further contribute a set of reference expert annotations to the validation and testing partitions of an existing benchmark dataset of European Court of Human Rights cases.
翻译:这项工作表明,没有专家知情的调整的法律判断预测系统可能容易受到由于物质构造、案件分布和混乱因素而产生的浅浅的、分散注意力的表面信号的影响。为了减轻这种影响,我们利用域域的专门知识从战略上确定统计上预测但在法律上不相干的信息。我们采用对抗性培训来防止系统依赖它。我们通过使用可解释技术和比较专家说明来评估我们缺乏依据的模型。定量实验和定性分析表明,我们缺乏依据的模型与专家理由的一致程度始终高于仅为预测而培训的基线。我们进一步提供一套参考专家说明,用以验证和测试欧洲人权法院案件现有基准数据集的划分情况。