Autoencoders are widely used in outlier detection due to their superiority in handling high-dimensional and nonlinear datasets. The reconstruction of any dataset by the autoencoder can be considered as a complex regression process. In regression analysis, outliers can usually be divided into high leverage points and influential points. Although the autoencoder has shown good results for the identification of influential points, there are still some problems when detect high leverage points. Through theoretical derivation, we found that most outliers are detected in the direction corresponding to the worst-recovered principal component, but in the direction of the well-recovered principal components, the anomalies are often ignored. We propose a new loss function which solve the above deficiencies in outlier detection. The core idea of our scheme is that in order to better detect high leverage points, we should suppress the complete reconstruction of the dataset to convert high leverage points into influential points, and it is also necessary to ensure that the differences between the eigenvalues of the covariance matrix of the original dataset and their corresponding reconstructed results in the direction of each principal component are equal. Besides, we explain the rationality of our scheme through rigorous theoretical derivation. Finally, our experiments on multiple datasets confirm that our scheme significantly improves the accuracy of outlier detection.


翻译:自动编码器因其在处理高维和非线性数据集方面的优势而被广泛用于外向检测。 由自动编码器重建任何数据集可被视为复杂的回归过程。 在回归分析中,外向器通常可以分为高杠杆点和有影响力的点。 虽然自动编码器在识别有影响力的点上取得了良好结果,但在检测高杠杆点时仍然存在一些问题。 通过理论推断,我们发现大多数外向器是在与最坏回收的主要组成部分相对应的方向上检测的,但是在回收良好的主要组成部分的方向上,反常常常被忽视。我们建议一个新的损失函数,解决以上在外向检测中的缺陷。我们计划的核心想法是,为了更好地检测高杠杆点,我们应该抑制对数据集的完全重建,将高杠杆点转换为有影响力的点,并且还有必要确保原始数据集的易变值矩阵及其在每个主要组成部分方向上的相应重建结果之间的差异是相同的。 此外,我们提出了一个新的损失函数功能功能,我们通过多重的实验方法来大大地改进了我们数据的精确性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月29日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员