Traceability approves trace links among software artifacts based on whether two artifacts are related by system functionalities. The traces are valuable for software development, but are difficult to obtain manually. To cope with the costly and fallible manual recovery, automated approaches are proposed to recover traces through textual similarities among software artifacts, such as those based on Information Retrieval (IR). However, the low quality & quantity of artifact texts negatively impact the calculated IR values, thus greatly hindering the performance of IR-based approaches. In this study, we propose to extract co-occurred word pairs from the text structures of both requirements and code (i.e., consensual biterms) to improve IR-based traceability recovery. We first collect a set of biterms based on the part-of-speech of requirement texts, and then filter them through the code texts. We then use these consensual biterms to both enrich the input corpus for IR techniques and enhance the calculations of IR values. A nine-system-based evaluation shows that in general, when solely used to enhance IR techniques, our approach can outperform pure IR-based approaches and another baseline by 21.9% & 21.8% in AP, and 9.3% & 7.2% in MAP, respectively. Moreover, when used to collaborate with another enhancing strategy from different perspectives, it can outperform this baseline by 5.9% in AP and 4.8% in MAP.


翻译:根据两种工艺品是否与系统功能相关,可追溯性批准软件文物之间的追踪链接。这些痕迹对于软件开发是有价值的,但很难手动获得。为了应对成本高、可失信的人工回收,建议采用自动化方法,通过软件文物之间的文本相似性(如基于信息检索的工艺品)来恢复追踪。然而,人工制品文本的质量和数量低,对计算出来的IR值产生了负面影响,从而大大妨碍了IR 方法的性能。在这项研究中,我们提议从要求和代码(即双方同意的双词)的文本结构中提取共同的词对,以改进IR的追踪回收。为了应对成本昂贵和易失信的人工制品。我们首先根据需求文本的部分内容收集一套双词,然后通过代码文本过滤。然而,我们用这些共同的双词来丰富IR技术的输入内容,从而强化IR 方法的性能。基于九种系统的评估表明,在仅用于加强IR技术的文本结构结构结构(即双方同意的双词)中,我们的方法可以超越基于IR IMB 的纯I-R-98 方法,然后用另一种IM- IMAP- 21 % 的基线方法,然后用另一种方法,用另一种基准方法,用新的IM-IM- IM- IM- IMAP-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-l-r-r-r-r-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

信息检索杂志(IR)为信息检索的广泛领域中的理论、算法分析和实验的发布提供了一个国际论坛。感兴趣的主题包括对应用程序(例如Web,社交和流媒体,推荐系统和文本档案)的搜索、索引、分析和评估。这包括对搜索中人为因素的研究、桥接人工智能和信息检索以及特定领域的搜索应用程序。 官网地址:https://dblp.uni-trier.de/db/journals/ir/
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员