Understanding natural language involves recognizing how multiple event mentions structurally and temporally interact with each other. In this process, one can induce event complexes that organize multi-granular events with temporal order and membership relations interweaving among them. Due to the lack of jointly labeled data for these relational phenomena and the restriction on the structures they articulate, we propose a joint constrained learning framework for modeling event-event relations. Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations by converting these constraints into differentiable learning objectives. We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data, and outperforms SOTA methods on benchmarks for both temporal relation extraction and event hierarchy construction, replacing a commonly used but more expensive global inference process. We also present a promising case study showing the effectiveness of our approach in inducing event complexes on an external corpus.
翻译:理解自然语言需要认识到多重事件如何在结构上和时间上相互交织。在这个过程中,人们可以诱发一些复杂事件,这些复杂事件组织多层次事件,有时间顺序和会籍关系相互交织。由于缺乏这些关系现象的共同标签数据,以及这些关系现象所表述的结构受到限制,我们提议为事件-事件关系建模建立一个联合受限制的学习框架。具体地说,该框架通过将这些制约因素转化为不同的学习目标,在多个时间和次活动关系中实施逻辑制约。我们表明,我们共同受限制的学习方法有效地弥补了缺乏共同标签数据的情况,并超越了SOTA关于时间关系提取和事件等级结构构建基准的方法,从而取代了普遍使用但费用更高的全球推论过程。我们还提出了一个很有希望的案例研究,展示了我们在外部因素中诱导事件综合体的方法的有效性。