Context: Technical Debt is a metaphor used to describe code that is "not quite right." Although TD studies have gained momentum, TD has yet to be studied as thoroughly in non-Object-Oriented (OO) or scientific software such as R. R is a multi-paradigm programming language, whose popularity in data science and statistical applications has amplified in recent years. Due to R's inherent ability to expand through user-contributed packages, several community-led organizations were created to organize and peer-review packages in a concerted effort to increase their quality. Nonetheless, it is well-known that most R users do not have a technical programming background, being from multiple disciplines. Objective: The goal of this study is to investigate TD in the peer-review documentation of R packages led by rOpenSci. Method: We collected over 5000 comments from 157 packages that had been reviewed and approved to be published at rOpenSci. We manually analyzed a sample dataset of these comments posted by package authors, editors of rOpenSci, and reviewers during the review process to investigate the TD types present in these reviews. Results: The findings of our study include (i) a taxonomy of TD derived from our analysis of the peer-reviews (ii) documentation debt as being the most prevalent type of debt (iii) different user roles are concerned with different types of TD. For instance, reviewers tend to report some TD types more than other roles, and the TD types they report are different from those reported by the authors of a package. Conclusion: TD analysis in scientific software or peer-review is almost non-existent. Our study is a pioneer but within the context of R packages. However, our findings can serve as a starting point for replication studies, given our public datasets, to perform similar analyses in other scientific software or to investigate the rationale behind our findings.


翻译:技术债务是一种隐喻,用来描述“不完全正确”的代码。尽管TD研究已经获得了势头,但大多数R用户并没有技术编程背景,而是来自多个学科。 目标:这项研究的目的是调查R.R.等科学软件的同行审议文件中的TD,R.R. R. 方法:我们收集了157个已审查和批准在RopenSci出版的软件包中的5000多份评论。由于R通过用户贡献的软件包扩展的内在能力,我们创建了几个社区牵头的组织,以组织和同行审议软件包,共同努力提高质量。然而,众所周知,大多数R用户没有技术编程背景,来自多个学科。 目标:这项研究的目标是调查R OpenSci 的RPetrical-审查文件库中的TD。 我们的同行审议文件集包括(i)我们目前不同版本的版本的同行审议报告,而我们目前版本的债务可持续性分析则包括(i)其他版本的债务可持续性分析。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年5月4日
Arxiv
15+阅读 · 2019年9月30日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员