The computer science research community and the broader public have become increasingly aware of negative consequences of algorithmic systems. In response, the top-tier Neural Information Processing Systems (NeurIPS) conference for machine learning and artificial intelligence research required that authors include a statement of broader impact to reflect on potential positive and negative consequences of their work. We present the results of a qualitative thematic analysis of a sample of statements written for the 2020 conference. The themes we identify broadly fall into categories related to how consequences are expressed (e.g., valence, specificity, uncertainty), areas of impacts expressed (e.g., bias, the environment, labor, privacy), and researchers' recommendations for mitigating negative consequences in the future. In light of our results, we offer perspectives on how the broader impact statement can be implemented in future iterations to better align with potential goals.
翻译:计算机科学研究界和广大公众越来越意识到算法系统的负面后果。作为回应,用于机器学习和人工智能研究的顶层神经信息处理系统会议(NeurIPS)要求作者包括一个影响更广的声明,以反思其工作的潜在积极和消极后果。我们介绍了为2020年会议编写的一份声明样本的定性专题分析结果。我们确定的主题广泛分为以下几类:如何表达后果(如价值、特殊性、不确定性)、表达的影响领域(如偏见、环境、劳动、隐私和研究人员关于减轻未来负面后果的建议)。根据我们的结果,我们就如何在今后的反复工作中执行更广泛的影响声明以更好地与潜在目标保持一致提出看法。