The large-matrix limit laws of the rescaled largest eigenvalue of the orthogonal, unitary and symplectic $n$-dimensional Gaussian ensembles -- and of the corresponding Laguerre ensembles (Wishart distributions) for various regimes of the parameter $\alpha$ (degrees of freedom $p$) -- are known to be the Tracy-Widom distributions $F_\beta$ ($\beta=1,2,4$). We will establish (paying particular attention to large, or small, ratios $p/n$) that, with careful choices of the rescaling constants and the expansion parameter $h$, the limit laws embed into asymptotic expansions in powers of $h$, where $h \asymp n^{-2/3}$ resp. $h \asymp (n\,\wedge\,p)^{-2/3}$. We find explicit analytic expressions of the first few expansions terms as linear combinations, with rational polynomial coefficients, of higher order derivatives of the limit law $F_\beta$. With a proper parametrization, the expansions in the Gaussian cases can be understood, for given $n$, as the limit $p\to\infty$ of the Laguerre cases. Whereas the results for $\beta=2$ are presented with proof, the discussion of the cases $\beta=1,4$ is based on some hypotheses, focussing on the algebraic aspects of actually computing the polynomial coefficients. For the purposes of illustration and validation, the various results are checked against simulation data with a sample size of a thousand million.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员