Grading of examination papers is a hectic, time-labor intensive task and is often subjected to inefficiency and bias in checking. This research project is a primitive experiment in the automation of grading of theoretical answers written in exams by students in technical courses which yet had continued to be human graded. In this paper, we show how the algorithmic approach in machine learning can be used to automatically examine and grade theoretical content in exam answer papers. Bag of words, their vectors & centroids, and a few semantic and lexical text features have been used overall. Machine learning models have been implemented on datasets manually built from exams given by graduating students enrolled in technical courses. These models have been compared to show the effectiveness of each model.


翻译:考试论文的分级是一项繁琐、时间拉动的任务,往往在检查方面缺乏效率和偏差。这个研究项目是技术课程的学生在考试中写成的理论答案的分类自动化的原始实验,而技术课程的学生在考试中写成的理论答案的等级仍为人类的等级。在本论文中,我们展示了机器学习的算法方法如何用于自动检查和在考试回答文件中的等级理论内容。已经全面使用了一袋单词、它们的矢量和小行星,以及一些语义和词汇文字特征。机械学习模型已经用技术课程毕业生考试人工制作的数据集来实施。这些模型已被比较,以显示每一种模式的有效性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员