A graph G is c-closed if every two vertices with at least c common neighbors are adjacent to each other. Introduced by Fox, Roughgarden, Seshadhri, Wei and Wein [ICALP 2018, SICOMP 2020], this definition is an abstraction of the triadic closure property exhibited by many real-world social networks, namely, friends of friends tend to be friends themselves. Social networks, however, are often temporal rather than static -- the connections change over a period of time. And hence temporal graphs, rather than static graphs, are often better suited to model social networks. Motivated by this, we introduce a definition of temporal c-closed graphs, in which if two vertices u and v have at least c common neighbors during a short interval of time, then u and v are adjacent to each other around that time. Our pilot experiments show that several real-world temporal networks are c-closed for rather small values of c. We also study the computational problems of enumerating maximal cliques and similar dense subgraphs in temporal c-closed graphs; a clique in a temporal graph is a subgraph that lasts for a certain period of time, during which every possible edge in the subgraph becomes active often enough, and other dense subgraphs are defined similarly. We bound the number of such maximal dense subgraphs in a temporal c-closed graph that evolves slowly, and thus show that the corresponding enumeration problems admit efficient algorithms; by slow evolution, we mean that between consecutive time-steps, the local change in adjacencies remains small. Our work also adds to a growing body of literature on defining suitable structural parameters for temporal graphs that can be leveraged to design efficient algorithms.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员