Derived variables are variables that are constructed from one or more source variables through established mathematical operations or algorithms. For example, body mass index (BMI) is a derived variable constructed from two source variables: weight and height. When using a derived variable as the outcome in a statistical model, complications arise when some of the source variables have missing values. In this paper, we propose how one can define a single fully Bayesian model to simultaneously impute missing values and sample from the posterior. We compare our proposed method with alternative approaches that rely on multiple imputation, and, with a simulated dataset, consider how best to estimate the risk of microcephaly in newborns exposed to the ZIKA virus.
翻译:暂无翻译