We propose a unifying framework for smoothed analysis of combinatorial local optimization problems and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $\phi$ on the probability density. We then demonstrate the power of this tool, by instantiating it for various PLS-hard problems to derive efficient smoothed running times. This not only unifies, and greatly simplifies, prior existing positive results, but also allows us to extend or improve them. Notable problems on which we provide such a contribution are Max-Cut, the Travelling Salesman problem, and Network Coordination Games. Additionally, in this paper we propose novel smoothed analysis formulations, and prove polynomial smoothed running times, for important local optimization problems that have not been studied before from this perspective. Importantly, we provide an extensive study of the problem of finding pure Nash equilibria in general and Network Congestion Games under various representation models, including explicit, step-function, and polynomial latencies. We show that all the problems we study can be solved by their standard local search algorithms in polynomial smoothed time on PLS-hard instances in which these algorithms have exponential worst-case running time.


翻译:我们提出一个统一框架, 用于平稳分析本地组合优化问题, 并展示如何在这个模型中选择复杂等级 PLS 中的问题。 这个抽象化让我们能够识别关键的结构属性和相应的参数, 确定本地搜索动态的平稳运行时间。 我们通过一个黑箱工具将它正式化, 提供本地搜索达到当地最佳程度之前所需的最大步骤的具体目标。 这个约束特别强大, 因为它可以带来任何最坏的解决方案, 任何选择旋转规则, 并且不依赖于对输入应用的具体噪音分布的选择, 但它只是由概率密度上层的美元和相应的参数来进行参数化。 我们通过对各种PLS- 硬度问题进行即时空化, 不仅统一, 并且大大简化, 之前的正面结果, 也允许我们扩展或改进它们。 我们提供这种贡献的多维度问题是 Max- Cut、 Travelyalal Strial Striformal Proformissional 和网络化过程分析。 我们通过这种平稳的平滑度分析, 展示了这些平滑的时空化的时空分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
25+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月12日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
25+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员