While Deep Learning excels in structured data as encountered in vision and natural language processing, it failed to meet its expectations on tabular data. For tabular data, Support Vector Machines (SVMs), Random Forests, and Gradient Boosting are the best performing techniques with Gradient Boosting in the lead. Recently, we saw a surge of Deep Learning methods that were tailored to tabular data but still underperform compared to Gradient Boosting on small-sized datasets. We suggest "Hopular", a novel Deep Learning architecture for medium- and small-sized datasets, where each layer is equipped with continuous modern Hopfield networks. The modern Hopfield networks use stored data to identify feature-feature, feature-target, and sample-sample dependencies. Hopular's novelty is that every layer can directly access the original input as well as the whole training set via stored data in the Hopfield networks. Therefore, Hopular can step-wise update its current model and the resulting prediction at every layer like standard iterative learning algorithms. In experiments on small-sized tabular datasets with less than 1,000 samples, Hopular surpasses Gradient Boosting, Random Forests, SVMs, and in particular several Deep Learning methods. In experiments on medium-sized tabular data with about 10,000 samples, Hopular outperforms XGBoost, CatBoost, LightGBM and a state-of-the art Deep Learning method designed for tabular data. Thus, Hopular is a strong alternative to these methods on tabular data.
翻译:虽然深层次学习在结构化数据方面优于在视觉和自然语言处理中遇到的数据,但它没有达到对表格数据的期望。 对于表格数据, 支持矢量机(SVMS)、 随机森林和“ 梯级推动” 是领先推力的最佳操作技术。 最近,我们看到了深层次学习方法的激增,这些方法是针对表格数据的定制的,但与小范围数据集的“梯级推动”相比,仍然表现不佳。 因此, 我们建议了“ Hopulal”, 一个新的中小层次数据集的深层次深层次学习结构, 每层都有连续的现代Hopfield网络。 现代的Hopfield网络使用存储数据来确定地貌、 地貌目标、 样本和样本样本的样本。 最近我们看到了深层次的深层次学习方法, 高层次可以直接访问原始输入的整个培训组。 因此, Hopulal可以逐步更新其当前模型, 并由此在每层层进行预测, 如标准的 迭级学习算法。 在小层次的更深层次的表格数据设置中,, 在深度的更深层次数据设置中, 在深度的甚层数据库中, 滚式的模型中, 滚式的模型中, 滚式的模型中, 滚式的模型中, 滚式的模型中, 滚式的模型中, 滚式的 滚式数据样本中, 滚式的模型是, 滚式的模型, 滚式方法是10 000 滚式数据样本, 滚式方法, 滚式方法, 滚式的 滚式的 滚式的 滚式的 滚式的 滚式的 滚式的 滚式的 滚式的 滚式 滚式的 滚式的 滚式的 滚式 滚式的 滚式 滚式方法, 滚式的 滚式 滚式 滚式的 滚式 滚式 滚式的 滚式的 滚式 滚式 滚式 滚式的 滚式 滚式 滚式的 滚式 滚式的 滚式的 滚式 滚式 滚式 滚式 滚式 滚式 滚式 滚式 滚式 滚式 滚式